Hello world
% This quicksort algorithm is extracted from Chapter 7, Introduction to Algorithms (3rd edition)
\begin{algorithm}
\caption{Quicksort}
\begin{algorithmic}
\PROCEDURE{Quicksort}{$A, p, r$}
\IF{$p < r$}
\STATE $q = $ \CALL{Partition}{$A, p, r$}
\STATE \CALL{Quicksort}{$A, p, q - 1$}
\STATE \CALL{Quicksort}{$A, q + 1, r$}
\ENDIF
\ENDPROCEDURE
\PROCEDURE{Partition}{$A, p, r$}
\STATE $x = A[r]$
\STATE $i = p - 1$
\FOR{$j = p$ \TO $r - 1$}
\IF{$A[j] < x$}
\STATE $i = i + 1$
\STATE exchange
$A[i]$ with $A[j]$
\ENDIF
\STATE exchange $A[i]$ with $A[r]$
\ENDFOR
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}
% This quicksort algorithm is extracted from Chapter 7, Introduction to Algorithms (3rd edition)
\begin{algorithm}
\caption{Quicksort}
\begin{algorithmic}
\PROCEDURE{Quicksort}{$A, p, r$}
\IF{$p < r$}
\STATE $q = $ \CALL{Partition}{$A, p, r$}
\STATE \CALL{Quicksort}{$A, p, q - 1$}
\STATE \CALL{Quicksort}{$A, q + 1, r$}
\ENDIF
\ENDPROCEDURE
\PROCEDURE{Partition}{$A, p, r$}
\STATE $x = A[r]$
\STATE $i = p - 1$
\FOR{$j = p$ \TO $r - 1$}
\IF{$A[j] < x$}
\STATE $i = i + 1$
\STATE exchange
$A[i]$ with $A[j]$
\ENDIF
\STATE exchange $A[i]$ with $A[r]$
\ENDFOR
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}
123 450