Inductive Definitions Introduction
ref:Lecture Notes on Inductive Definitions
Judgements (prediction, assertion, …)
Examples:
Inductive Definitions
Examples
- Natural number
- nat(0)
- nat(n) ⇒ nat(n+1)
- Relation in natual number
- leq(0, 0)
- leq(n, m) ⇒ leq(n+1, m+1)
- leq(n, m) ⇒ leq(n, m+1)
Inference Rules
Assume a given inductive definition with a rules of the form:
From now on, we will write such rule as:
For example, the judgement nat(n) is defined by the following rules:
\begin{array}{}\\ \hline \text{nat}(0)\end{array}N_1& \begin{array}{}\text{nat}(n)\\ \hline \text{nat}(n+1)\end{array}N_1 \end{array}The judgement leq(n, m) is defined by the following rules:
\begin{array}{}\\ \hline \text{leq}(0, 0)\end{array}L_1 & \begin{array}{}\text{leq}(n, m) \\ \hline \text{leq}(n+1, m+1)\end{array}L_2 & \begin{array}{}\text{leq}(n, m) \\ \hline \text{leq}(n, m+1)\end{array}L_3 & \end{array}$$ ## Derivations ![[Pasted image.png]]