Inductive Definitions Introduction

ref:Lecture Notes on Inductive Definitions

Judgements (prediction, assertion, …)

Examples:

Inductive Definitions

Examples

  • Natural number
    1. nat(0)
    2. nat(n) nat(n+1)
  • Relation in natual number
    1. leq(0, 0)
    2. leq(n, m) leq(n+1, m+1)
    3. leq(n, m) leq(n, m+1)

Inference Rules

Assume a given inductive definition with a rules of the form:

From now on, we will write such rule as:

For example, the judgement nat(n) is defined by the following rules:

\begin{array}{}\\ \hline \text{nat}(0)\end{array}N_1& \begin{array}{}\text{nat}(n)\\ \hline \text{nat}(n+1)\end{array}N_1 \end{array}

The judgement leq(n, m) is defined by the following rules:

\begin{array}{}\\ \hline \text{leq}(0, 0)\end{array}L_1 & \begin{array}{}\text{leq}(n, m) \\ \hline \text{leq}(n+1, m+1)\end{array}L_2 & \begin{array}{}\text{leq}(n, m) \\ \hline \text{leq}(n, m+1)\end{array}L_3 & \end{array}$$ ## Derivations ![[Pasted image.png]]